4.7 Article

The influence of the chemical composition of the Ti-Hf-Zr-Ni-Cu-Co shape memory alloys on the structure and the martensitic transformations

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 968, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2023.172040

关键词

Multi-component shape memory alloy; High-entropy shape memory alloys; Configuration entropy; Martensitic transformations

向作者/读者索取更多资源

Twelve senary alloys with different concentrations of doping elements were manufactured, and it was found that the concentration of doping elements affected the lattice parameter and the chemical composition of the alloys. The alloys exhibited a B2 phase regardless of entropy value, and the formation of strain nanodomains and the martensitic transformation were influenced by the concentration of doping elements and the Ni group concentration. The type of secondary phase depended on the Ni concentration.
Twelve senary alloys were manufactured with different concentrations of doping elements (Hf, Zr, Ni, and Cu) that varied from 1 to 17 at%, and the concentration of the Ni equivalent (Ni, Cu, and Co) atoms changed from 49 to 51 at%. It allowed the production of Ti-Hf-Zr-Ni-Cu-Co alloys with various configuration entropies. It was found that, regardless of the entropy value, all alloys crystallised in the B2 phase, in which the lattice parameter increased upon a rise in the doping elements' concentration (X parameter) and was hardly affected by the Ni group concentration ([Ni] = Ni + Cu + Co). In the alloys with low and medium entropy, the chemical composition of the B2 phase was homogeneous and close to the composition of the alloy. In the alloys with high entropy, the core and edge of dendrite cells in the matrix were characterised by different concentrations of doping elements, while the concentration of the Ni group was constant. Besides the B2 phase, the secondary phase existed in all alloys, whose type [Ti]2[Ni] or [Ni]4[Ti]3 depended on the [Ni] value, as was observed in the binary NiTi alloys. It was found that the Ti-Hf-Zr-Ni-Cu-Co alloys with low and medium entropy underwent the B2 <-> B19 ' martensitic transformation on cooling and heating. An increase in the [Ni] and X values initiated the formation of the strain nanodomains on cooling before the forward transformation. In the high-entropy alloys with X = 10 at%, the strain nanodomains formed on cooling to - 180 degrees C without the formation of the B19 ' phase. In the alloys with X = 17 at%, strain nanodomains, and martensitic transformation were not found on cooling, but the martensitic transformation was initiated by loading at - 100 degrees C. It was shown that the variation in the Ni group concentration affected the martensitic transformation parameters only in the low-entropy alloys. In the medium- and high-entropy alloys, the concentration of the doping element had a more significant effect on the transformation than the [Ni] value.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据