4.7 Article

Understanding global groundwater-climate interactions

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 904, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.166571

关键词

Droughts; Hydrology; Recharge; Surface water; Climate teleconnections

向作者/读者索取更多资源

Global warming has a significant impact on water availability and future water supplies, especially on groundwater systems. The study found that climate variability plays a major role in the distribution of groundwater recharge, and there is a clear relationship between global climate and groundwater.
Global warming is emerging as an important predictor of water availability and future water supplies across the world through inducing the frequency and severity in hydrological extremes. These extremes (e.g., drought) have potential impacts on groundwater, environmental flows, as well as increase social inequalities (limited access to water by the poor), among a range of other issues. Understanding the influence of global climate on groundwater systems is thus critical to help reshape global water markets through policies underpinned by the knowledge of climatic processes driving the water cycle and freshwater supply. The main aim of this study is to improve understanding of the influence of climate variability on global groundwater using statistical methods (e.g., multi linear regression and wavelet analyses). The response of groundwater to climate variability are assessed and the feasibility of identifying climatic hotspots of groundwater-climate interactions are explored (2003 2017). Generally, climate variability plays a major role in the distribution of groundwater recharge, evidenced in the groundwater-rainfall relationship (r ranging from 0.6 to 0.8 with lags of 1-5 months) in several regions (Amazon and Congo basins, West Africa, and south Asia). Some of the areas where no relationship exists coincide with major regional aquifer systems (e.g., Nubian sand stone in north Africa) in arid domains with fossil groundwater. Our results also show that groundwater fluxes across the world are driven by global climate teleconnections.Notable among these climate teleconnections are PDO, ENSO, CAR, and Nino 4 with PDO showing the strongest relationship (r= 0.80) with groundwater in some hotspots (e.g. in South America). The explicit role of the Pacific ocean in regulating groundwater fluxes provides an opportunity to improve the prediction of climate change impact on global freshwater systems. As opposed to remarkably large productive hydrological systems (Amazon and Congo basins), in typically arid domains, groundwater could be restricted during prolonged drought, constraining the persistence of surface water in the maintenance of a healthy surface-groundwater interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据