4.7 Article

Transcriptomic mechanism for foliar applied nano-ZnO alleviating phytotoxicity of nanoplastics in corn (Zea mays L.) plants

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 905, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.166818

关键词

Polystyrene nanoplastics; Nano-ZnO; Corn; Physiological effects; Gene expression

向作者/读者索取更多资源

Nanoplastics are emerging pollutants that pose potential threats to agriculture and food security. Nano-ZnO, as an ideal nano-fertilizer dispersion, shows promise for managing nanoplastic stress. This study found that nano-ZnO significantly reduced the accumulation of polystyrene nanoplastics (PSNPs) in corn plants and weakened their toxic effects by regulating photosynthesis, glutathione metabolism, and phytohormone signal transduction pathways. These findings contribute to the understanding of how nano-ZnO can improve the sustainable utilization of nano-fertilizers in agriculture.
Nanoplastics, as emerging pollutants, have drawn increasing concerns for their potential threats to agriculture and food security. ZnO nanoparticles (nano-ZnO), serving as ideal nano-fertilizer dispersion in sustainable agriculture, might be a promising application for nanoplastic stress management. To determine the role of nanoZnO in regulating crop response towards nanoplastic pollutions, corn (Zea mays L.) seedlings after leaf treatment by nano-ZnO were foliar exposed to polystyrene nanoplastics (PSNPs). The presence of nano-ZnO significantly reduced the accumulation of PSNPs in corn leaf, stem and root tissues by 40.7 %-71.4 %. Physiologically, nanoZnO prominently decreased the extent of PSNP-induced reduction in chlorophyll content and photosynthetic rates, thereby greatly weakening the toxic effects of PSNPs on corn plant growth. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses demonstrated that responsive differentially expressed genes involved in photosynthesis, glutathione metabolism and phytohormone signal transduction pathways explained the enhanced tolerance of corn plants to PSNPs under the addition of nano-ZnO. Among the key genes of photosynthesis, nano-ZnO ensured the regular expression of chlorophyll synthesis genes (CHLH, CHLD, CHLM, DVR, GTR and POR), photosystem II gene (PetH), and carbon fixation enzyme genes (pepc, rbcL and rbcS) inhibited by PSNP exposure. These findings enlarge our understanding of the mechanism by which nano-ZnO attenuates the negative effects of nanoplastics on crops, which is of great significance for improving the sustainable utilization of nano-fertilizers in agriculture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据