4.7 Article

The protective role of Achyranthes aspera extract against cisplatin-induced nephrotoxicity by alleviating oxidative stress, inflammation, and PANoptosis

期刊

JOURNAL OF ETHNOPHARMACOLOGY
卷 319, 期 -, 页码 -

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.jep.2023.117097

关键词

Achyranthes aspera; acute kidney injury; Autophagy/mitophagy; Cisplatin; Next-generation sequencing (NGS) analysis; PANoptosis

向作者/读者索取更多资源

This study investigates the molecular mechanisms of the action of Achyranthes aspera using an integrative approach and aims to provide a comprehensive understanding of its protective effects and underlying signaling networks.
Ethnopharmacological relevance: Achyranthes aspera, a widely recognized medicinal plant, is used in various cultures for treating different ailments, including renal dysfunction; however, there is a lack of comprehensive understanding of its protective effects and the underlying signaling networks involved.Aim of the study: This study aimed to investigate the molecular mechanisms of the action of A. aspera by employing an integrative approach including functional and tissue imaging as well as comprehensive genomics analysis.Materials and methods: Cisplatin-induced nephrotoxicity is a well-established animal model for acute kidney injury (AKI). In this study, we investigated the protective effects and underlying mechanisms of the action of A. aspera water-soluble extract (AAW) on a murine model of cisplatin-induced AKI. The evaluation includes measurements of blood urea nitrogen (BUN) and serum creatinine (SCr) levels, histology examination, and transcriptome analysis using RNA sequencing. Results: In male ICR mice, oral administration of AAW at doses of 0.5-1.0 g/kg significantly reduced cisplatininduced nephrotoxicity. This effect included the amelioration of tubular injury, renal fibrosis, and the lowering of BUN and SCr levels. AAW also effectively decreased oxidative markers, such as malondialdehyde (MDA) and nitrotyrosine (NT), along with inflammation markers, including COX-2, iNOS, NLRP3, and pP65NF kappa B. Moreover, AAW administration induced a dose-dependent increase in the expression of two protective factors, Nrf2 and BcL2, and suppressed apoptosis, as evidenced by reduced levels of truncated caspase 3 (t-Casp3). To explore the underlying molecular mechanisms and signaling networks, next-generation sequencing(NGS) analysis was employed. The results revealed that AAW mitigated apoptosis, necroptosis, and PANoptosis pathways by inhibiting inflammation signaling pathways, such as the TNF alpha-, NF kappa B-, NETs-, and leukocyte transendothelial migration pathways. Additionally, AAW was found to enhance protective signaling pathways, including the cGMP/PKG-, cAMP-, AMPK-, and mTOR-dependent activation of autophagy and mitophagy pathways. The primary bioactive compound found in AAW was identified as 20-hydroxyecdysone (0.36%).Conclusion: Our study demonstrates that AAW reduces cisplatin-induced nephrotoxicity. The protective effects of AAW are attributed to its modulation of multiple molecular signaling networks. Specifically, AAW downregulates genes and signaling pathways associated with oxidative stress and endoplasmic reticulum (ER) stress, inflammation, and PANoptosis. Simultaneously, it upregulates genes and signaling pathways associated with cell survival, including autophagy and mitophagy pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据