4.6 Article

Pseudomonas aeruginosa Enolase Influences Bacterial Tolerance to Oxidative Stresses and Virulence

期刊

FRONTIERS IN MICROBIOLOGY
卷 7, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2016.01999

关键词

Pseudomonas aeruginosa; enolase; oxidative stress response; bacterial virulence; gene regulation

资金

  1. National Science Foundation of China [31670130, 31370168, 31370167]
  2. Program of international ST cooperation [2015DFG32500]
  3. Science and Technology Committee of Tianjin [15JCYBJC53900, 15JCZDJC33000]

向作者/读者索取更多资源

Pseudomonas aeruginosa is a Gram negative opportunistic pathogenic bacterium, which causes acute and chronic infections. Upon entering the host, bacteria alter global gene expression to adapt to host environment and avoid clearance by the host. Enolase is a glycolytic enzyme involved in carbon metabolism. It is also a component of RNA degradosome, which is involved in RNA processing and gene regulation. Here, we report that enolase is required for the virulence of P. aeruginosa in a murine acute pneumonia model. Mutation of enolase coding gene (eno) increased bacterial susceptibility to neutrophil mediated killing, which is due to reduced tolerance to oxidative stress. Catalases and alkyl hydroperoxide reductases play a major role in protecting the cell from oxidative damages. In the eno mutant, the expression levels of catalases (KatA and KatB) were similar as those in the wild type strain in the presence of H2O2, however, the expression levels of alkyl hydroperoxide reductases (AhpB and AhpC) were significantly reduced. Overexpression of ahpB but not ahpC in the eno mutant fully restored the bacterial resistance to H2O2 as well as neutrophil mediated killing, and partially restored bacterial virulence in the murine acute pneumonia model. Therefore, we have identified a novel role of enolase in the virulence of P. aeruginosa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据