4.5 Article

Polarization-Wavelength Locked Plasmonic Topological States

向作者/读者索取更多资源

This article reports the realization of polarization-wavelength locked plasmonic topological edge states on the Su-Schrieffer-Heeger (SSH) model, and proposes two mechanisms. These results have potential applications in optical emitters and photonic devices.
topological states, providing a new way to bypass the diffraction limits and against fabrication disorders, have attracted intense attention. In addition to the near-field coupling and band topology, the localized surface plasmonic resonance modes can be manipulated with far-field degrees of freedom (DoFs), such as polarization. However, changing the frequency of the topological edge states with different polarized incident waves remains a challenge, which has led to significant interest in multiplexed radiative topological devices. Here, we report the realization of polarization-wavelength locked plasmonic topological edge states on the Su-Schrieffer-Heeger (SSH) model. We theoretically and numerically show that such phenomenon is based on two mechanisms, i.e., the splitting in the spectra of plasmonic topological edge states with different intrinsic parity DoF and projecting the farfield polarizations to the parity of lattice modes. These results promise applications in robust optical emitters and multiplexed photonic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据