4.6 Article

Transmon probe for quantum characteristics of magnons in antiferromagnets

期刊

PHYSICAL REVIEW B
卷 108, 期 9, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.108.094430

关键词

-

向作者/读者索取更多资源

Studying the quantum properties of magnons in antiferromagnetic materials is important for the development of nanomagnetism and energy efficient quantum technologies. Hybrid systems based on superconducting circuits enable effective coupling between magnons and transmon qubits, with the characteristics of magnons characterized by the Rabi frequency of the transmon.
The detection of magnons and their quantum properties, especially in antiferromagnetic (AFM) materials, is a substantial step to realize many ambitious advances in the study of nanomagnetism and the development of energy efficient quantum technologies. The recent development of hybrid systems based on superconducting circuits provides the possibility to engineer quantum sensors that exploit different degrees of freedom. Here, we examine the magnon-photon-transmon hybridization based on bipartite AFM materials, which gives rise to an effective coupling between a transmon qubit and magnons in a bipartite AFM. We demonstrate how magnon modes, their chiralities, and quantum properties, such as nonlocality and two-mode magnon entanglement in bipartite AFMs, can be characterized through the Rabi frequency of the superconducting transmon qubit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据