4.7 Article

Flame retardancy and degradation process of precipitation construction of double-shell flame-retardant microcapsules

期刊

INDUSTRIAL CROPS AND PRODUCTS
卷 205, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.indcrop.2023.117551

关键词

Kraft; Ammonium polyphosphate; Microcapsules; Flame retardancy; Physical properties

向作者/读者索取更多资源

This study employed an in-situ precipitation method to construct a double-shell ammonium polyphosphate microcapsule, with ethyl cellulose and nano-silica serving as shell materials. The microcapsule exhibited improved flame retardancy and fire safety, as evidenced by significant reductions in both maximum heat release rate and total heat release. The real-time Fourier transform infrared, scanning electron microscopy, and Raman spectrum analyses revealed the combustion process of the modified kraft paper. Physical and hygroscopicity tests demonstrated superior compatibility of the microcapsule with substrates.
In order to address the issues of poor smoke suppression, substrate compatibility, and strong hygroscopicity associated with ammonium polyphosphate, this study employed an in-situ precipitation method to construct a double-shell ammonium polyphosphate microcapsule, with ethyl cellulose and nano-silica serving as shell materials. The microcapsule exhibited improved flame retardancy and fire safety compared to ammonium polyphosphate alone, as evidenced by significant reductions in both maximum heat release rate and total heat release, as determined by thermal-gravimetric analysis (TGA), microcalorimetry (MCC), and vertical burning tests (VBT). Furthermore, the real-time Fourier transform infrared (RT-FTIR), scanning electron microscopy (SEM), and Raman spectrum analyses revealed that the modified kraft paper produced a cross-linked network structure formed by the silica-based substrate and cellulose during combustion, which facilitated the formation of a carbon layer and provided sustained flame retardancy. Physical and hygroscopicity tests demonstrated that the microcapsule exhibited superior compatibility with substrates. Overall, these findings demonstrate that microencapsulation of ammonium polyphosphate effectively addresses the challenges of compatibility and hygroscopicity, while enhancing its flame-retardant efficacy, thus significantly advancing its application in flame retardant materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据