4.6 Article

Systemic multiomics evaluation of the therapeutic effect of Bacteroides species on liver cirrhosis in male mice

期刊

MICROBIOLOGY SPECTRUM
卷 -, 期 -, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.05349-22

关键词

liver cirrhosis; Bacteroides; multiomics; gut-liver axis; metabolomics; microbiome

向作者/读者索取更多资源

This study investigates the therapeutic effects of human gut-derived Bacteroides species on liver cirrhosis in a mouse model. The results show that Bacteroides treatment improves liver function and hepatic fibrosis biomarkers. Metabolomic analysis reveals distinctive profiles in fecal samples, with propionic acid identified as a potential key metabolite for therapeutic effects. Microbiome analysis shows that Akkermansia muciniphila is retained in the Bacteroides-treated group. This study demonstrates that Bacteroides species, particularly B. dorei, ameliorate liver cirrhosis by modulating the metabolic and microbial environment within the gut-liver axis.
The human gut microbiome is engaged in biological homeostasis in the gut-liver axis and across multi-organs. The aim of this study is to investigate the therapeutic effects of human gut-derived microbes, Bacteroides species on liver cirrhosis in a mouse model. The experiment was performed on male mice, which were divided into five groups: normal control (NC), disease control, Bacteroides dorei-, Bacteroides cellulosilyticus-, and ursodeoxycholic acid-supplemented groups after 3,5-diethoxycarbonyl-1,4-dihydrocollidine treatment. The therapeutic effect was evaluated based on liver physiology and the expression level of hepatic fibrosis. Untargeted and targeted metabolic profiling was conducted on cecal, fecal, liver, and serum samples using ultra-performance liquid-chromatography coupled with high-resolution mass-spectrometry. The gut microbial taxonomic composition was analyzed by 16S rRNA gene amplicon sequencing from the stool of each mice group. The Bacteroides treatment improved the liver/body weight ratio and normalized hepatic fibrosis biomarkers, including COL1A1. The fecal metabolome showed the most distinctive and characteristic profiles according to different treatments, compared to other sample matrices (cecum, liver, and blood). Key metabolites were identified, which indicated the potential therapeutic effect of the B. dorei treatment. Among them, a short-chain fatty acid, propionic acid, showed consistent upregulation in the cecum and liver after the B. dorei treatment. Microbiome analysis showed that Akkermansia muciniphila was retained in the group treated with B. dorei at a similar level as in the NC group. Our current multiomics study of systemic dynamics demonstrated that Bacteroides species, particularly B. dorei, ameliorated liver cirrhosis by modulating the metabolic and microbial environment to the normal state within the gut-liver axis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据