4.5 Review

A review of the use of Mxenes as hosts in lithium metal anodes and the anode formation

期刊

NEW CARBON MATERIALS
卷 38, 期 4, 页码 -

出版社

ELSEVIER
DOI: 10.1016/S1872-5805(23)60761-9

关键词

MXene; 2D materials; Synthetize; Lithium anodes; Carbon hybridization

向作者/读者索取更多资源

This review summarizes the synthesis methods and applications of MXenes as host materials for lithium metal anodes, focusing on their advantages in mitigating volume changes and inhibiting lithium dendrite growth. Potential research directions are also discussed.
Severe dendritic growth and volume expansion are easily induced during the cycling process when lithium metal is used as an anode electrode directly. These problems cause the solid electrolyte interface (SEI) layer to break and re-form, which consumes the active lithium metal and electrolyte, thereby reducing the Coulomb efficiency and rapid capacity. Designing a host matrix with rapid mass transfer and enough storage space to promote lithium homogeneous deposition, hence reducing the repeated SEI growth and the formation of dead lithium, is an effective method to address the concerns mentioned above issues. MXenes with two-dimensional layered structures have been regarded as feasible hosts for stabilizing lithium due to their superior electrical conductivity, sizeable interlayer space, abundant lithiophilic surface functional groups, and excellent mechanical properties. In this review, we first summarized the multiple synthesis methods of MXenes, including etching the precursor MAX phase, chemical vapor deposition, UV-induced etching, and mechanochemical et al. Various synthesis methods would induce different surface termination and lamellar structures, affecting lithium metal nucleation and growth behavior. Subsequently, pure MXene, MXene-carbon and MXene-non carbon hybrid compounds applied for lithium metal anode hosts were introduced, focusing on alleviating noticeable volume changes and inhibiting lithium dendrite growth. Finally, some modification strategies and potential research prospects were summarized and prospected.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据