4.7 Article

Wintertime oxidative potential of PM2.5 over a big urban city in the central Indo-Gangetic Plain

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 905, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.167155

关键词

Reactive oxygen species; Dithiothreitol; Source apportionment; Secondary aerosols; Resuspended fine dust; Human health

向作者/读者索取更多资源

This study investigated the oxidative potential (OP) of PM2.5 and identified the main sources responsible for the observed OP in the winter season in the Indo-Gangetic Plain region. The results showed that secondary aerosols had the highest contribution to OP.
Indo-Gangetic Plain (IGP) experiences a heavy load of particulate pollution impacting the 9 % of the global population living in this region. The present study examines the dithiothreitol (DTT) assay-based oxidative potential (OP) of PM2.5 and the major sources responsible for the observed OP over the central IGP (Kanpur) during winter. The volume normalized OP (OPV) of PM2.5 varied from 2.7 to 10 nmol DTT min(-1) m(-3) (5.5 +/- 1.5) and mass normalized OP (OPM) of PM2.5 varied from 19 to 58 pmol DTT min(-1) mu g(-1) (34 +/- 8.0), respectively. Major sources of PM2.5 were identified using the positive matrix factorization (PMF) and the contribution of these sources to observed OP was estimated through multivariate linear regression of OPv with PMF-resolved factors. Although the PM2.5 mass was dominated by secondary aerosols (SA, 28 %), followed by crustal dust (CD, 24 %), resuspended fine dust (RFD, 14 %), traffic emissions (TE, 8 %), industrial emissions (IE, 17 %), and trash burning (TB, 9 %), their proportionate contribution to OP (except SA) was different likely due to differences in redox properties of chemical species coming from these sources. The SA showed the highest contribution (23 %) to observed OP, followed by RFD (19 %), IE (8 %), TE & TB (5 %), CD (4 %), and others (36 %). Our results highlight the significance of determining the chemical composition of particulates along with their mass concentrations for a better understanding of the relationship between PM and health impacts. Such studies are still lacking in the literature, and these results have direct implications for making better mitigation strategies for healthier air quality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据