4.7 Article

Evolution of medium-range order and its correlation with magnetic nanodomains in Fe-Dy-B-Nb bulk metallic glasses

期刊

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
卷 176, 期 -, 页码 224-235

出版社

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2023.07.066

关键词

Fe-based metallic glass; Liquid -liquid phase transition; Medium-range ordering; Magnetic nanodomain

向作者/读者索取更多资源

Fe-based metallic glasses are promising materials in the fields of advanced magnetism and sensors. This study proposes a novel approach to tailor the amorphous structure through liquid-liquid phase transition, and provides insights into the correlation between structural disorder and magnetic order. The results show that the liquid-liquid phase transition can induce more locally ordered nanodomains, leading to stronger exchange interactions and increased saturation magnetization. The increased local heterogeneity also enhances magnetic anisotropy, resulting in a better stress-impedance effect.
Fe-based metallic glasses are promising functional materials for advanced magnetism and sensor fields. Tailoring magnetic performance in amorphous materials requires a thorough knowledge of the correlation between structural disorder and magnetic order, which remains ambiguous. Two practical difficulties remain: the first is directly observing subtle magnetic structural changes on multiple scales, and the second is precisely regulating the various amorphous states. Here we propose a novel approach to tailor the amorphous structure through the liquid-liquid phase transition. In-situ synchrotron diffraction has unraveled a medium-range ordering process dominated by edge-sharing cluster connectivity during the liquid-liquid phase transition. Moreover, nanodomains with topological order have been found to exist in composition with liquid-liquid phase transition, manifesting as hexagonal patterns in small-angle neutron scattering profiles. The liquid-liquid phase transition can induce the nanodomains to be more locally ordered, generating stronger exchange interactions due to the reduced Fe-Fe bond length and the enhanced structural order, leading to the increment of saturation magnetization. Furthermore, the increased local heterogeneity at the medium-range scale enhances the magnetic anisotropy, promoting the permeability response under applied stress and leading to a better stress-impedance effect. These experimental results pave the way to tailor the magnetic structure and performance through the liquid-liquid phase transition. (c) 2023 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据