4.7 Article

A coupled isogeometric/multi-sphere discrete element approach for the contact interaction between irregular particles and structures

期刊

POWDER TECHNOLOGY
卷 430, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.powtec.2023.118971

关键词

Isogeometric analysis; Multi-sphere particle; Coupling; Contact interaction; IGA/DEM

向作者/读者索取更多资源

An isogeometric/multi-sphere discrete-element coupling method is proposed for modeling contact or impact between structures and particles with complex shape. The method combines the advantages of the multi-sphere discrete element method and isogeometric analysis, providing high efficiency and accuracy.
An isogeometric/multi-sphere discrete-element coupling method is presented to model the contact or impact between structures and particles with complex shape. This coupling method takes advantages of the multi-sphere discrete element method for particles to provide the high computational efficiency and excellent robustness of their contact modelling. The advantage of isogeometric analysis (IGA) for continuous solid material, e.g. the exact geometric description, is also taken to achieve a more accurate contact interaction with an excellent time continuity. In the coupling procedure, the CGRID method is used for the global searching. The exact contact situation of the discrete element and the IGA element surface is further determined in the local searching by solving non-linear equations numerically. Then, the normal contact force between a sphere and an IGA element is calculated using a penalty based Hertz-Mindlin contact model, and damping and friction forces are also considered. Both the accuracy and validity of the coupling method are examined by comparing the numerical results of an example with one particle impacting on a quarter of a cylinder, with those of the FEM model where the particle is modelled as a rigid body. Two additional examples involving particles impacting onto a corrugated plate and particles of different shapes impacting on a chute, are simulated to further assess the applicability and robustness of the proposed method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据