4.1 Article

Development of an Image Encryption Algorithm using Latin Square Matrix and Logistics Map

出版社

SCIENCE & INFORMATION SAI ORGANIZATION LTD

关键词

Image encryption; algorithm; logistics map; Latin square matrix; chaos technology

向作者/读者索取更多资源

This study develops a robust image cryptographic scheme based on Latin Square Matrix and Logistics Map to effectively secure sensitive data. The integration of these algorithms provides a strong and resilient encryption technique. The study addresses issues such as image volume, different sizes, and misplaced pixel positions, making it an effective method for image encryption. Evaluation results show that the algorithm securely protects image data, making it difficult for unauthorized users to decrypt the information, and can be applied in real-time systems.
The goal of this study was to develop a robust image cryptographic scheme based on Latin Square Matrix and Logistics Map, capable of effectively securing sensitive data. Logistics mapping is a comparatively strong chaos system which enciphers with an unpredictability that significantly reduces the chance of deciphering. Additionally, the Latin square matrix stands out for its uniform histogram distribution, thereby bolstering its encryption's potency. The consequent integration of these algorithms in this study was therefore grounded in the scientific rationale of establishing a strong and resilient cypher technique. The study provides a new chaos-based method and extends the application of the probabilistic approach to the domain of symmetric key image encryption. Permutation and substitution approaches of image encryption were deployed to address the issue of images volume and differing sizes. The issue of misplaced pixel positions in the image was also adequately addressed, making it an effective method for image encryption. The hybrid technique was simulated on image data and evaluated to gauge its performance. Results showed that the algorithm was able to securely protect image data and the private information associated with them, while also making it very difficult for unauthorized users to decrypt the information. The average encryption time of 184(mu s) on seven (7) images showed that it could to be deployed for real-time systems. The proposed method obtained an average entropy of 7.9398 with key space of 1.17x1077 and an average avalanche effect (%) of 49.9823 confirming the security and resilience of the developed method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据