4.2 Article

N100 as a generic cortical electrophysiological marker based on decomposition of TMS-evoked potentials across five anatomic locations

期刊

EXPERIMENTAL BRAIN RESEARCH
卷 235, 期 1, 页码 69-81

出版社

SPRINGER
DOI: 10.1007/s00221-016-4773-7

关键词

Transcranial magnetic stimulation; Electroencephalography; N100; Motor cortex; Prefrontal cortex; Cerebellum

资金

  1. NIH [MH085646, DA027680, MH103222]

向作者/读者索取更多资源

N100, the negative peak of electrical response occurring around 100 ms, is present in diverse functional paradigms including auditory, visual, somatic, behavioral and cognitive tasks. We hypothesized that the presence of the N100 across different paradigms may be indicative of a more general property of the cerebral cortex regardless of functional or anatomic specificity. To test this hypothesis, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to measure cortical excitability by TMS across cortical regions without relying on specific sensory, cognitive or behavioral modalities. The five stimulated regions included left prefrontal, left motor, left primary auditory cortices, the vertex and posterior cerebellum with stimulations performed using supra- and subthreshold intensities. EEG responses produced by TMS stimulation at the five locations all generated N100s that peaked at the vertex. The amplitudes of the N100s elicited by these five diverse cortical origins were statistically not significantly different (all uncorrected p > 0.05). No other EEG response components were found to have this global property of N100. Our findings suggest that anatomy- and modality-specific interpretation of N100 should be carefully evaluated, and N100 by TMS may be used as a biomarker for evaluating local versus general cortical properties across the brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据