4.5 Article

Super Neurons

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TETCI.2023.3314658

关键词

Convolutional neural networks; generative neurons; non-localized kernels; operational neural networks; receptive field

向作者/读者索取更多资源

In this article, the authors propose a new neural network model called Self-ONNs, which utilize super neurons to increase the receptive field size and improve information flow. The use of super neurons allows for non-localized kernel operations without adding computational complexity, resulting in superior learning and generalization capability.
Self-Organized Operational Neural Networks (Self-ONNs) have recently been proposed as new-generation neural network models with nonlinear learning units, i.e., the generative neurons that yield an elegant level of diversity; however, like its predecessor, conventional Convolutional Neural Networks (CNNs), they still have a common drawback: localized (fixed) kernel operations. This severely limits the receptive field and information flow between layers and thus brings the necessity for deep and complex models. It is highly desired to improve the receptive field size without increasing the kernel dimensions. This requires a significant upgrade over the generative neurons to achieve the non-localized kernel operations for each connection between consecutive layers. In this article, we present superior (generative) neuron models (or super neurons in short) that allow random or learnable kernel shifts and thus can increase the receptive field size of each connection. The kernel localization process varies among the two super-neuron models. The first model assumes randomly localized kernels within a range and the second one learns (optimizes) the kernel locations during training. An extensive set of comparative evaluations against conventional and deformable convolutional, along with the generative neurons demonstrates that super neurons can empower Self-ONNs to achieve a superior learning and generalization capability with a minimal computational complexity burden. PyTorch implementation of Self-ONNs with super-neurons is now publically shared.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据