4.7 Article

A nationwide monitoring of atmospheric microplastic deposition

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 905, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.166923

关键词

Atmosphere; Atmospheric deposition; Airborne microplastics; Sampling methodology; Outdoor fallout; Urban areas

向作者/读者索取更多资源

Plastic production continues to increase every year, and this study focuses on the deposition of microplastics (MPs) in the atmosphere. The researchers conducted a one-year monitoring in ten urban areas in Spain to quantify the atmospheric MP deposition. The results showed that polyester fibers were the most abundant type of MPs, and densely populated areas had higher deposition rates. This study provides a systematic methodology for monitoring atmospheric MP deposition.
Plastic production continues to increase every year, yet it is widely acknowledged that a significant portion of this material ends up in ecosystems as microplastics (MPs). Among all the environmental compartments affected by MPs, the atmosphere remains the least well-known. Here, we conducted a one-year simultaneous monitoring of atmospheric MPs deposition in ten urban areas, each with different population sizes, economic activities, and climates. The objective was to assess the role of the atmosphere in the fate of MPs by conducting a nationwide quantification of atmospheric MP deposition. To achieve this, we deployed collectors in ten different urban areas across continental Spain and the Canary Islands. We implemented a systematic sampling methodology with rigorous quality control/quality assurance, along with particle-oriented identification and quantification of anthropogenic particle deposition, which included MPs and industrially processed natural fibres. Among the sampled MPs, polyester fibres were the most abundant, followed by acrylic polymers, polypropylene, and alkyd resins. Their equivalent sizes ranged from 22 mu m to 398 mu m, with a median value of 71 mu m. The particle size distribution of MPs showed fewer large particles than expected from a three-dimensional fractal fragmentation pattern, which was attributed to the higher mobility of small particles, especially fibres. The atmospheric deposition rate of MPs ranged from 5.6 to 78.6 MPs m- 2 day -1, with the higher values observed in densely populated areas such as Barcelona and Madrid. Additionally, we detected natural polymers, mostly cellulosic fibres with evidence of industrial processing, with a deposition rate ranging from 6.4 to 58.6 particles m- 2 day -1. There was a positive correlation was found between the population of the study area and the median of atmospheric MP deposition, supporting the hypothesis that urban areas act as sources of atmospheric MPs. Our study presents a systematic methodology for monitoring atmospheric MP deposition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据