4.7 Article

The adsorbent preparation of lanthanum functionalized sponge based on CMC coating for effective phosphorous removal

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-023-30293-2

关键词

Melamine sponge; Lanthanum; Sodium carboxymethyl cellulose; Phosphorus removal

向作者/读者索取更多资源

A novel nanocomposite adsorbent with great adsorption performance was developed in this study for phosphorus removal. The material was characterized and the adsorption mechanism was investigated. The findings suggest that this material holds promise for application in wastewater treatment.
Eutrophication is a severe worldwide concern caused by excessive phosphorus release. Thus, significant efforts have been made to develop phosphorus removal techniques, particularly by nanomaterial adsorption. However, because of the limitations associated with nanoparticles including easy agglomeration, and separation challenges, a novel nanocomposite adsorbent with great adsorption performance is urgently required. A sponge adsorbent (MS-CMC@La) was developed in this study to remove phosphorus using melamine sponge (MS), LaCl3, and sodium carboxymethyl cellulose (CMC). The results of SEM/EDS, FTIR, and XPS demonstrated that La was well-dispersed on MS-CMC@La. Adsorption isotherm and kinetics met with the Langmuir model (R2 = 0.981) and the pseudo-second-order kinetics (R2 = 0.989), respectively. The maximum adsorption capacity of MS-CMC@La was found to be 15.28 mg/g; the material exhibited excellent selectivity toward phosphorus in the presence of coexisting anion except of F-; the adsorption behavior was greatly impacted by pH. Furthermore, the electrostatic attraction, ligand exchange and inner-sphere coordination regulate the phosphate adsorption mechanism, with inner-sphere coordination dominating. In summary, the nano-enriched materials developed in this study are capable of facilitating the application of functionalized sponges in the field of wastewater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据