4.7 Article

Investigating the role of surface micro/nano structure in cell adhesion behavior of superhydrophobic polypropylene/nanosilica surfaces

期刊

COLLOIDS AND SURFACES B-BIOINTERFACES
卷 127, 期 -, 页码 233-240

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2015.01.054

关键词

Superhydrophobic; Cell adhesion; Micro/nano structure; Nanosilica; Non-solvent

资金

  1. Iranian Nanotechnology Initiative

向作者/读者索取更多资源

The main aim of the current study was to investigate the effects of different topographical features on the biological performance of polypropylene (PP)/silica coatings. To this end, a novel method including combined use of nanoparticles and non-solvent was used for preparation of superhydrophobic PP coatings. The proposed method led to a much more homogeneous appearance with a better adhesion to the glass substrate. Moreover, a notable reduction was observed in the required contents of nanoparticles (100-20 wt% with respect to the polymer) and non-solvent (35.5-9 vol%) for achieving superhydrophobicity. Surface composition and morphology of the coatings were also investigated via X-ray photoelectron spectroscopy and scanning electron microscopy. Based on both qualitative and quantitative evaluations, it was found that the superhydrophobic coatings with only nano-scale roughness strongly prevented adhesion and proliferation of 4T1 mouse mammary tumor cells as compared to the superhydrophobic surfaces with micro-scale structure. Such results demonstrate that the cell behavior could be controlled onto the polymer and nanocomposite-based surfaces via tuning the surface micro/nano structure. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据