4.5 Article

A bioinformatic analysis: Previous allergen exposure may support anti-SARS-CoV-2 immune response

期刊

COMPUTATIONAL BIOLOGY AND CHEMISTRY
卷 107, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compbiolchem.2023.107961

关键词

Covid-19; protein; MHC epitopes; Epitope similarity; allergens; Bioinformatic

向作者/读者索取更多资源

A study found that pre-existing virus-reactive T-cells in COVID-19 patients may be due to similarity with certain allergens. The presence of these cells may affect the course of the disease, but further research is needed to determine their specific role.
COVID-19, caused by infection with the SARS-CoV-2 has become a global health problem due to significant mortality rates; the exact pathophysiological mechanism remains uncertain. Articles reporting patient data are quite heterogeneous and have several limitations. Surviving patients develop a CD4 and CD8 T-cell response to the virus SARS-CoV-2 during COVID-19. Interestingly, pre-existing virus-reactive T-cells have been found in patients that were not infected before, suggesting some form of cross-reactivity or immunological mimicry. To better understand this phenomenon, we performed a bioinformatic study, which was aimed to identify antigenic structures that may explain the presence of such reactive T-cells, which may support or modulate the immune response to SARS-CoV-2 infections. Seven different common environmental allergen epitopes identical to the SARS-CoV-2 S-protein were identified that share affinity to 8 MHCI-specific epitope regions. Pollen showed the greatest similarity with the S protein epitope. In the epitope similarity analysis between the S protein and MHC-II / T helper epitopes, the highest similarity was determined for mites. When S-protein that stimulates B cells and identical epitope antigens are examined, the most common allergens were hornbeam and wheat. The high epitope similarity observed for the allergens examined and S protein epitopes suggest that these allergens may be a reason for pre-existing SARS-CoV-2 - reactive T-cells in previously non-infected subjects and such a previous exposure may affect the course of the disease in COVID-19 infection. It remains to be determined whether such a previous existence of SARS-CoV-2 reactive cells can support the clearance of the virus or if they, in contrast, may even aggravate the disease course. (Table 4, Ref 54)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据