4.6 Article

How a pilot's brain copes with stress and mental load? Insights from the executive control network

期刊

BEHAVIOURAL BRAIN RESEARCH
卷 456, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.bbr.2023.114698

关键词

Mental workload; Acute stress; Aviation; fNIRS; Executive control network

向作者/读者索取更多资源

In aviation, mental workload and stress have significant impacts on a pilot's performance and decision-making. Monitoring the pilot's mental state can help prevent dangerous effects caused by excessive workload and stress.
In aviation, mental workload and stress are two major factors that can considerably impact a pilot's flight performance and decisions. Their consequences can be even more dramatic in single-pilot aircraft or with the forthcoming single-pilot operations where the pilot will fly alone and will not be able to be assisted in case of difficulty. An accurate and automatic monitoring of the pilot's mental state could help to prevent the potentially dangerous effects of an excess mental workload and stress. For example, some tasks could be allocated to automation or to a ground-based flight crew if a mental overload or significant stress is detected. In the current study, the brain activity of 20 private pilots was recorded with a fNIRS device during two realistic flight simulator scenarios. The mental workload was manipulated with the added difficulty of a secondary task and stress was induced by a social stressor. Our results confirmed the sensitivity of the fNIRS readings to variations in the mental workload, with increased HbO2 concentration in regions of the executive control network (ECN), in particular in the dorsolateral prefrontal cortex and in lateral parietal regions, when the difficulty of the sec-ondary task was high. The social stressor also triggered an HbO2 increase in the ECN, especially when it was combined with high mental workload. This latter result suggests that mental workload and stress together can have cumulative effects, and coping with both factors is possible at the expense of an extra recruitment of the ECN. Finally, results also revealed a time-on-task effect, with a progressive reduction of the HbO2 signal in the ECN during the flight scenario, suggesting that these regions are sensitive to short term habituation to the tasks. Overall, fNIRS efficiently indexed mental load, stress, and practice effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据