4.5 Article

A flexible deep learning crater detection scheme using Segment Anything Model (SAM)

期刊

ICARUS
卷 408, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.icarus.2023.115797

关键词

Segmentation; Segment Anything Model; SAM; Crater detection; Machine learning; AI; Planetary science; Terrestrial planets; Computer vision

向作者/读者索取更多资源

Craters are important features in planetary exploration and can be automatically detected and estimated using machine learning and computer vision. However, existing models are limited to specific types of data and may not be reliable with data from different sources and setups. This paper presents a flexible crater detection scheme based on the Segment Anything Model (SAM), which can effectively identify and measure craters in various types of data and setups.
Craters are one of the most important morphological features in planetary exploration. To that extent, detecting, mapping and counting craters is a mainstream process in planetary science, done primarily manually, which is a very laborious, time-consuming and inconsistent process. Recently, machine learning (ML) and computer vision have been successfully applied for both detecting craters and estimating their size. Existing ML models for automated crater detection have been trained in specific types of data e.g. digital elevation model (DEM), images and associated metadata from orbiters such as the Lunar Reconnaissance Orbiter Camera (LROC) etc. Due to that, each of the resulting ML schemes is applicable and reliable only to the type of data used during the training process. Data from different sources, angles and setups can compromise the reliability of these ML schemes. In this paper we present a flexible crater detection scheme that is based on the recently proposed Segment Anything Model (SAM) from META AI. SAM is a promptable segmentation system with zero-shot generalisation to unfamiliar objects and images without the need for additional training. Using SAM, without additional training and fine-tuning, we can successfully identify crater-looking objects in various types of data (e,g, raw satellite images Level-1 and 2 products, DEMs etc.) for different setups (e.g. Lunar, Mars) and different capturing angles. Moreover, using shape indexes, we only keep the segmentation masks of crater-like features. These masks are subsequently fitted with a circle or an ellipse, recovering both the location and the size/geometry of the detected craters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据