4.7 Article

Structure Preserved Discriminative Distribution Adaptation for Multihyperspectral Image Collaborative Classification

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2023.3315472

关键词

Collaborative classification; hyperspectral (HS) image; multispectral (MS) image; probability distribution adaptation; spectral mismatch

向作者/读者索取更多资源

In this article, a novel structure-preserving discriminative distribution adaptive MS-HS image collaborative classification method is proposed to improve the classification accuracy of large-scene MS images. The method maximizes the distance between different classes by combining statistical properties and geometric constraints, and adaptively maps multiscale spectral-spatial features of MS-HS images to subspaces for classification. Experimental results on three sets of MS-HS datasets demonstrate the effectiveness of the proposed method in reducing the differences between MS-HS data and achieving better classification results.
The fine spectra of the hyperspectral (HS) images can fully reflect the subtle features of the spectra of different objects; however, due to the limitation of the imaging equipment, its swath is not as large as that of multispectral (MS) images. The acquisition of MS images is more convenient, but the discrimination of spectral features is relatively poor. This article aims to investigate how partially overlapping HS images can be used to improve the classification accuracy of large-scene MS images. Because of the spectral mismatch existing between MS and HS features, traditional transfer learning methods cannot solve the problem of classification with heterogeneous features. To address this issue, a novel structure-preserving discriminative distribution adaptive MS-HS image collaborative classification method is proposed in this article, which aims to improve the classification accuracy of large-scene MS images by discriminative features. Specifically, this method combines statistical properties and geometric constraints in transfer learning and jointly maximizes the distance between different classes by discriminative least squares to maximize classification accuracy; moreover, the source and target domains are probabilistically adaptive while maintaining the local structure of MS-HS features, so that the data distribution is fully aligned and the distance between different classes is increased. The learned mapping matrix enables the mapping of multiscale spectral-spatial features of MS-HS images to subspaces for classification. Compared with related advanced methods, three sets of MS-HS datasets show that the proposed method can effectively reduce the differences between MS-HS data and achieve better classification results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据