4.8 Article

Engineered a dual-targeting HA-TPP/A nanoparticle for combination therapy against KRAS-TP53 co-mutation in gastrointestinal cancers

期刊

BIOACTIVE MATERIALS
卷 32, 期 -, 页码 277-291

出版社

KEAI PUBLISHING LTD
DOI: 10.1016/j.bioactmat.2023.10.003

关键词

Dual-targeting; KRAS; TP53; Co-mutation; HA-TPP/A nanoparticle; Mitochondrial targeting; Gastrointestinal cancer

向作者/读者索取更多资源

This article presents a novel nanoparticle for treating KRAS-TP53 co-mutation in gastrointestinal cancers. The nanoparticle can degrade mutant p53 proteins (mutp53) and deliver the drug AMG510 to inhibit mutant KRAS and mutp53 signaling pathways. The results show that the nanoparticle can effectively reduce cell proliferation and migration, and demonstrate remarkable therapeutic efficacy in a tumor-bearing mouse model.
KRAS-TP53 co-mutation is strongly associated with poor prognosis and high malignancy in gastrointestinal cancers. Therefore, a novel approach to oncotherapy may lie in combination therapy targeting both KRAS and TP53. Herein, we present a novel self-assembled nanoparticle (HA-TPP/A) that are functionalized nano-carrier hyaluronic acid (HA)-TPP conjugate (HA-TPP) to degrade mutant p53 proteins (mutp53) and co-deliver AMG510 for treating KRAS-TP53 co-alteration of gastrointestinal cancers by inhibiting the mutant KRAS and mutp53 signaling pathways. The HA-TPP/A nanoparticles led to ubiquitination-dependent proteasomal degradation of mutp53 by targeting damage to mitochondria. Furthermore, these nanoparticles abrogated the gain-of function (GOF) phenotypes of mutp53 and increased sensitivity to AMG510-induced cell killing, thereby reducing cell proliferation and migration in gastrointestinal cancer with KRAS-TP53 co-mutation. The co-loaded HA-TPP/A nanoparticles demonstrated remarkable therapeutic efficacy in a tumor-bearing mouse model, particularly in KRAS-TP53 double mutant expressing cancer cells, compared with single drug and combined free drug groups. Notably, HA-TPP/A is the first reported nanoparticle with an ability to co-target KRAS-TP53, providing a promising approach for therapy in highly malignant gastrointestinal tumors and potentially expanding clinical indications for AMG510 targeted therapies in gastrointestinal tumors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据