4.7 Article

Mixed nitrate and metal contamination influences operational speciation of toxic and essential elements

期刊

ENVIRONMENTAL POLLUTION
卷 338, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2023.122674

关键词

Sequential extraction; Phosphate; Uranium; Oxyanion; Adsorption; Metal oxides

向作者/读者索取更多资源

Environmental contamination affects microbial communities by limiting diversity and total metabolic activity. The study investigates metal contamination in sediment and finds that the operational speciation of certain elements changes due to contamination. Furthermore, the availability of essential elements also changes. The decreased operational speciation of phosphorus in contaminated sediment may increase the dependence of microbial communities on other phosphorus sources.
Environmental contamination constrains microbial communities impacting diversity and total metabolic activity. The former S-3 Ponds contamination site at Oak Ridge Reservation (ORR), TN, has elevated concentrations of nitric acid and multiple metals from decades of processing nuclear material. To determine the nature of the metal contamination in the sediment, a three-step sequential chemical extraction (BCR) was performed on sediment segments from a core located upgradient (EB271, non-contaminated) and one downgradient (EB106, contaminated) of the S-3 Ponds. The resulting exchangeable, reducing, and oxidizing fractions were analyzed for 18 different elements. Comparison of the two cores revealed changes in operational speciation for several elements caused by the contamination. Those present from the S-3 Ponds, including Al, U, Co, Cu, Ni, and Cd, were not only elevated in concentration in the EB106 core but were also operationally more available with increased mobility in the acidic environment. Other elements, including Mg, Ca, P, V, As, and Mo, were less operationally available in EB106 having decreased concentrations in the exchangeable fraction. The bioavailability of essential macro nutrients Mg, Ca, and P from the two types of sediment was determined using three metal-tolerant bacteria previously isolated from ORR. Mg and Ca were available from both sediments for all three strains; however, P was not bioavailable from either sediment for any strain. The decreased operational speciation of P in contaminated ORR sediment may increase the dependence of the microbial community on other pools of P or select for microorganisms with increased P scavenging capabilities. Hence, the microbial community at the former S-3 Ponds contamination site may be constrained not only by increased toxic metal concentrations but also by the availability of essential elements, including P.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据