4.8 Article

Maximizing Electrostatic Polarity of Non-Sacrificial Electrolyte Additives Enables Stable Zinc-Metal Anodes for Aqueous Batteries

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202307880

关键词

Electrostatic Polarity; Non-Sacrificial Additives; Zinc-Ion Batteries; Zn Anode

向作者/读者索取更多资源

This study reveals the critical role of saccharide additives in regulating reversible zinc plating/stripping chemistry. By continuously modulating the solvation structure of zinc ions and forming a molecular adsorption layer, saccharide additives enable uniform zinc deposition and improve cycling stability and lifespan.
Although additives are widely used in aqueous electrolytes to inhibit the formation of dendrites and hydrogen evolution reactions on Zn anodes, there is a lack of rational design principles and systematic mechanistic studies on how to select a suitable additive to regulate reversible Zn plating/stripping chemistry. Here, using saccharides as the representatives, we reveal that the electrostatic polarity of non-sacrificial additives is a critical descriptor for their ability to stabilize Zn anodes. Non-sacrificial additives are found to continuously modulate the solvation structure of Zn ions and form a molecular adsorption layer (MAL) for uniform Zn deposition, avoiding the thick solid electrolyte interphase layer due to the decomposition of sacrificial additives. A high electrostatic polarity renders sucrose the best hydrated Zn2+ desolvation ability and facilitates the MAL formation, resulting in the best cycling stability with a long-term reversible plating/stripping cycle life of thousands of hours. This study provides theoretical guidance for the screening of optimal additives for high-performance ZIBs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据