4.2 Article

Catch-22s of reservoir computing

期刊

PHYSICAL REVIEW RESEARCH
卷 5, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.5.033213

关键词

-

向作者/读者索取更多资源

Reservoir computing is a model-free framework for predicting the behavior of nonlinear dynamical systems. However, it struggles to learn the dynamics of some systems unless key information is known. Next-generation reservoir computing can accurately predict the basins of attraction of a system, but small uncertainty in nonlinearity can reduce the prediction accuracy.
Reservoir computing (RC) is a simple and efficient model-free framework for forecasting the behavior of nonlinear dynamical systems from data. Here, we show that there exist commonly-studied systems for which leading RC frameworks struggle to learn the dynamics unless key information about the underlying system is already known. We focus on the important problem of basin prediction-determining which attractor a system will converge to from its initial conditions. First, we show that the predictions of standard RC models (echo state networks) depend critically on warm-up time, requiring a warm-up trajectory containing almost the entire transient in order to identify the correct attractor. Accordingly, we turn to next-generation reservoir computing (NGRC), an attractive variant of RC that requires negligible warm-up time. By incorporating the exact nonlinearities in the original equations, we show that NGRC can accurately reconstruct intricate and high-dimensional basins of attraction, even with sparse training data (e.g., a single transient trajectory). Yet, a tiny uncertainty in the exact nonlinearity can render prediction accuracy no better than chance. Our results highlight the challenges faced by data-driven methods in learning the dynamics of multistable systems and suggest potential avenues to make these approaches more robust.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据