4.7 Article

Functionalization of lignin through ATRP grafting of poly(2-dimethylaminoethyl methacrylate) for gene delivery

期刊

COLLOIDS AND SURFACES B-BIOINTERFACES
卷 125, 期 -, 页码 230-237

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2014.11.018

关键词

Biomass; Lignin; ATRP; Graft copolymer; PDMAEMA; Gene delivery

资金

  1. Agency for Science, Technology and Research (A*STAR), Singapore (SERC PSF) [102 101 0024]
  2. Agency for Science, Technology and Research (A*STAR), Singapore JCO [10/03/FG/06/05]
  3. National University of Singapore (FSF) [R-397-000-136-112, R397-000-136-731]
  4. National University of Singapore

向作者/读者索取更多资源

The biomass kraft lignin was modified into lignin-based macroinitiators (LnMI) through esterification of the alcohol and phenol functional groups on lignin backbone with 2-bromo-isobutyric bromide under mild condition. Then a series of cationic amphiphilic lignin-based graft copolymers were synthesized by atom transfer radical polymerization (ATRP) of 2-(dimethylamino)ethyl methacrylate (DMAEMA) starting from the lignin-based macroinitiators. These copolymers, denoted as LnPDMAEMA, had a hyperbranched structure with a hydrophobic backbone of lignin and multiple cationic hydrophilic arms of PDMAEMA. The LnPDMAEMA copolymers were characterized by H-1 NMR and elemental analysis (EA), and studied in terms of their DNA binding capability, formation of nanoparticles with plasmid DNA (pDNA), cytotoxicity, and gene transfection in cultured cells. It was found that all the copolymers could efficiently compact pDNA into nanoparticles with sizes ranging from 100 to 200 nm at N/P ratios of 5 or higher. The cytotoxicity of these copolymers depends greatly on the chain length of PDMAEMA arms, the longer the PAMAEMA chain the higher the cytotoxicity. Luciferase assay was used to study the in vitro gene transfection for the LnPDMAEMA copolymers in different cell lines. The gene transfection efficiency of these copolymers was dependent on the grafted PDMAEMA chain length and N/P ratio. Generally, the transfection efficiency decreased with the increase of PAMAEMA length at N/P ratio of 20 or higher. It is very interesting that one of the LnPDMAEMA copolymers with very short arm length (degree of average DMAEMA units 5.5) showed excellent in vitro transfection efficiency that was comparable or even higher than that of branched PEI (25K). These novel biomass-based LnPDMAEMA hyperbranched copolymers can be a promising nonviral gene vectors for future gene delivery application. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据