4.7 Article

Molecular orientation dynamics triggers ferroelectricity and ferroelasticity in an organic-inorganic halide material

期刊

INORGANIC CHEMISTRY FRONTIERS
卷 -, 期 -, 页码 -

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3qi01650a

关键词

-

向作者/读者索取更多资源

This study achieves the coexistence of multiple ferroic ordering in (imidazolium)3PbBr5 by utilizing ingenious molecular orientation dynamics, offering instructive clues for designing multiple ferroic orderings in a single material.
The ability to achieve multiple ferroic orderings can provide more selectivity for diverse applications, such as non-volatile memory, energy conversion, and pressure sensors. Molecular crystals occupy an important position in ferroic materials owing to their structural diversity, ease of preparation, low cost, and mechanical flexibility. However, it has been a great challenge to satisfy multiple ferroic ordering in a single material that is constrained by stringent crystal symmetry requirements. Herein, we have achieved multiple ferroic ordering coexistence in (imidazolium)3PbBr5 by utilizing ingenious molecular orientation dynamics. Confined by the unique skeleton of corner-shared lead halide octahedrons, the molecular out-of-plane and in-plane reorientational motions of imidazolium cations modulated by thermal stimulation result in ferroelectric and ferroelastic phase transitions. This study offers instructive clues for designing multiple ferroic orderings in a single material for potential emerging applications. Ingenious molecular orientation dynamics achieves ferroelectricity and ferroelassticity in an organic-inorganic halide material with unique 1D corner-sharing lead bromide skeleton.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据