4.6 Article

Contact efficiency optimization for tribovoltaic nanogenerators

期刊

MATERIALS HORIZONS
卷 -, 期 -, 页码 -

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3mh01369c

关键词

-

向作者/读者索取更多资源

A quantification method is proposed to determine the effective contact area and assess the contact efficiency of large-scale tribovoltaic nanogenerators, and the corresponding optimization strategy is also provided to enhance their output performance.
Energy harvesters based on the tribovoltaic effect that can convert mechanical energy into electricity offer a potential solution for the energy supply of decentralized sensors. However, a substantial disparity in output current, exceeding 106 times, exists between micro- and macro-contact tribovoltaic nanogenerators (TVNGs). To tackle this challenge, we develop a quantification method to determine the effective contact efficiency of conventional large-scale TVNGs, revealing a mere 0.038% for a TVNG of 1 cm2. Thus, we implement an optimization strategy by contact interface design resulting in a remarkable 65-fold increase in effective contact efficiency, reaching 2.45%. This enhancement leads to a current density of 23 A m-2 and a record-high charge density of 660 mC m-2 for the TVNG based on Cu and p-type silicon. Our study reveals that increasing the effective contact efficiency will not only address the existing disparities but also have the potential to significantly enhance the output current in future advancements of large-scale TVNGs. A quantification method is proposed to determine the effective contact area and assess the contact efficiency of large-scale tribovoltaic nanogenerators, and the corresponding optimization strategy is also provided to enhance their output performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据