4.8 Article

Copper ion/gallic acid MOFs-laden adhesive pomelo peel sponge effectively treats biofilm-infected skin wounds and improves healing quality

期刊

BIOACTIVE MATERIALS
卷 32, 期 -, 页码 260-276

出版社

KEAI PUBLISHING LTD
DOI: 10.1016/j.bioactmat.2023.10.005

关键词

Wound healing; Decellularized pomelo peel; Bacteria infection; Granulation tissue formation; Scar formation

向作者/读者索取更多资源

By functionalizing a decellularized pomelo peel with an adhesive hydrogel and antibacterial materials, the hybrid wound dressing can effectively inhibit bacterial infection, promote granulation tissue formation and angiogenesis, and reduce scar formation during wound healing.
Bacterial infection and scar formation remain primary challenges in wound healing. To address these issues, we developed a decellularized pomelo peel (DPP) functionalized with an adhesive PVA-TSPBA hydrogel and antibacterial gallic acid/copper MOFs. The hybrid wound dressing demonstrates favorable biocompatibility. It does not impede the proliferation of fibroblasts or immune cells and can stimulate fibroblast migration, endothelial angiogenesis, and M2 macrophage polarization. Additionally, the dressing can scavenge reactive oxygen species (ROS) and provide antioxidant effects. Furthermore, DPP + MOF@Gel effectively inhibits the viability of S. aureus and E. coli in vitro and in vivo. The histological observations revealed enhanced granulation tissue formation, re-epithelialization, and angiogenesis in the DPP + MOF@Gel group compared to other groups. The local immune response also shifted from a pro-inflammatory to a pro-regenerative status with DPP + MOF@Gel treatment. The skin incision stitching experiment further exhibits DPP + MOF@Gel could reduce scar formation during wound healing. Taken together, the hybrid DPP + MOF@Gel holds great promise for treating bacteriainfected skin wounds and inhibiting scar formation during wound healing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据