4.7 Article

Appraisal of agroforestry biomass wastes for hydrogen production by an integrated process of fast pyrolysis and in line steam reforming

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 347, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2023.119071

关键词

Pine wood; Citrus waste; Rice husk; Pyrolysis; Reforming; Hydrogen

向作者/读者索取更多资源

The pyrolysis and in line steam reforming of different types of agroforestry biomass wastes were studied, and their effects on conversion, product yields and H2 production were evaluated. The composition of pyrolysis volatiles obtained from different biomasses resulted in variations in activity and catalyst deactivation rate.
The pyrolysis and in line steam reforming of different types of representative agroforestry biomass wastes (pine wood, citrus wastes and rice husk) was performed in a two-reactor system made up of a conical spouted bed and a fluidized bed. The pyrolysis step was carried out at 500 C-degrees, and the steam reforming at 600 C-degrees with a space time of 20 g(catalyst) min g(volatiles)(-1) and a steam/biomass ratio (S/B) of 4. A study was conducted on the effect that the pyrolysis volatiles composition obtained with several biomasses has on the reforming conversion, product yields and H2 production. The different composition of the pyrolysis volatiles obtained with the three biomasses studied led to differences in the initial activity and, especially, in the catalyst deactivation rate. Initial conversions higher than 99% were obtained in all cases and the H2 production obtained varied in the 6.7-11.2 wt% range, depending on the feedstock used. The stability of the catalysts decreased depending on the feedstock as follows: pine wood >> citrus waste > rice husk. A detailed assessment of the mechanisms of catalyst deactivation revealed that coke deposition is the main cause of catalyst decay in all the runs. However, the volatile composition derived from the pyrolysis of citrus waste and rice husk involved the formation of an encapsulating coke, which severely blocked the catalyst pores, leading to catalyst deactivation during the first minutes of reaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据