4.6 Article

Comprehensive analysis of properties of green diesel enhanced by fatty acid methyl esters

期刊

RSC ADVANCES
卷 13, 期 45, 页码 31460-31469

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3ra06492a

关键词

-

向作者/读者索取更多资源

This study investigates the lubricating properties of bio-hydrogenated diesel (BHD) blended with varying concentrations of fatty acid methyl ester (FAME). The addition of even a small amount of FAME (5%) significantly improves the lubricating properties of BHD, reducing wear. The study highlights the potential of FAME as an additive to enhance lubricity and reduce engine wear in BHD.
This study systematically investigates the lubricating properties of bio-hydrogenated diesel (BHD), a synthetic diesel produced through biomass hydrogenation of vegetable oil. Despite having similar chemical properties to petroleum diesel, BHD has poor lubricating properties due to the removal of sulfur and oxygenated compounds during the hydrogenation process, which could damage the engine. To address this issue, fatty acid methyl esters (FAME) was added as an additive to BHD to enhance its fuel and lubricating properties. FAME is a polar molecule with good lubricating properties that adsorb on the surface to protect against wear. The study found that adding as little as 5% FAME significantly improved the lubricating properties of BHD. The wear scar diameter (WSD) decreased from 609 mu m to 249 mu m, and the average film was 94% with an average coefficient of friction of 0.138 by only 5% FAME addition investigated by High Frequency Reciprocating Rig with ISO 12156-1: 2018. This shows that blending FAME with BHD could reduce engine wear and improve its lubricating properties. Disc samples were analyzed using a Scanning Electron Microscope (SEM), OLS5100 3D laser microscopy, and Fourier Transform Infrared Microscopy (FTIR) to examine the worn surface both physically and chemically. An increase in the percentage of FAME addition to BHD resulted in a smoother worn surface, exhibiting reduced delamination and debris compared to pure BHD. This effect was attributed to the protective film formed by FAME. The study highlights the potential of FAME as an additive to enhance the lubricating properties of BHD and reduce engine wear. This study investigates the lubricating properties of bio-hydrogenated diesel (BHD) blended with varying fatty acid methyl ester (FAME) concentrations using a high-frequency reciprocating rig (HFRR) to measure lubricity and provides comprehensive tribology results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据