4.7 Article

Revealing hot tear formation dynamics in Al-Cu alloys with X-ray radiography

期刊

ACTA MATERIALIA
卷 262, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2023.119421

关键词

Hot tears; Solidification; Al alloys; Synchrotron X-ray radiography; Interdendritic flow

向作者/读者索取更多资源

Hot tears during alloy solidification can have catastrophic effects on cast tensile properties. While there are correlations between casting conditions and hot tear sensitivity, the influence of microstructure on tearing has not been fully understood. In this study, in situ X-ray radiography is used to quantify the formation and growth of hot tears in Al-5Cu and Al-5Cu-1Fe alloys, and an automated hot tear detection algorithm is developed to analyze the role of IMC particles in hot tear behavior.
Hot tears can arise during the late part of alloy solidification because of the shrinkage of isolated liquid as it turns to solid and may have a catastrophic effect on cast tensile properties. Although there are correlations to suggest alloy hot tear sensitivity to casting conditions, they do not capture the influence of microstructure on tearing, such as second-phase particles or intermetallic compounds (IMCs) commonly present in engineering alloys. We use in situ X-ray radiography to quantify the formation and growth behaviour of hot tears in Al-5Cu and Al-5Cu-1Fe alloys during solidification. An automated hot tear detection, tracking and merging algorithm is developed and applied to reveal the role of Fe-rich IMC particles, typical of recycled alloys, on hot tear behaviour. These defects are termed hot tears here on the basis of their complex, extended inter-connected morphology, distinct from more rounded shrinkage porosity. We also visualise and quantify the velocity of interdendritic flow driven by solidification shrinkage, and estimate the pressure changes due to shrinkage. Hot tearing starts at lower solid fraction when IMCs are present due to reduced interdendritic flow, and hot tear formation is more spatially homogeneous, less clustered and more numerous. We show that the largest, most damaging hot tears form from many merging events, that is enhanced by the presence of IMCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据