4.6 Article

Analytical probing of membranotropic effects of antimicrobial copper nanoparticles on lipid vesicles as membrane models

期刊

NANOSCALE ADVANCES
卷 5, 期 23, 页码 6533-6541

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3na00608e

关键词

-

向作者/读者索取更多资源

This study used phosphatidylcholine-based large unilamellar vesicles as mimics of cellular membranes to investigate the effect of ultra-small CuNPs on phospholipid membranes. The findings suggested that CuNPs are able to damage the membranes, leading to their agglomeration or disruption.
Copper nanoparticles (CuNPs) are antimicrobial agents that are increasingly being used in several real-life goods. However, concerns are arising about their potential toxicity and thus, appropriate legislation is being issued in various countries. In vitro exploration of the permeability and the distribution of nanoparticles in cell membranes should be explored as the first step towards the investigation of the toxicity mechanisms of metal nanoantimicrobials. In this work, phosphatidylcholine-based large unilamellar vesicles have been explored as mimics of cellular membranes to investigate the effect of ultra-small CuNPs on the physicochemical features of phospholipid membranes. 4 nm-sized CuNPs were synthesized by a wet-chemical route that involves glutathione as a stabilizer, with further characterization by UV-vis absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. Two fluorescent membrane probes bearing naphthalene moieties (laurdan and prodan) were used to monitor the bilayer structure and dynamics, as well as to demonstrate the strong membranotropic effects of CuNPs. The fluorescence spectroscopic studies were supported by dynamic light scattering (DLS) measurements and the calcein leakage assay. Additionally, the degree of perturbation of the phospholipid bilayer by CuNPs was compared against that of Cu2+ ions, the latter resulting in negligible effects. The findings suggested that CuNPs are able to damage the phospholipid membranes, leading to their agglomeration or disruption. Fluorescence spectroscopic studies assess in vitro supramolecular interactions of ultra-small antimicrobial copper nanoparticles with phospholipids integrating biological membranes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据