4.6 Article

Long-time rigidity to flux-induced symmetry breaking in quantum quench dynamics

期刊

PHYSICAL REVIEW B
卷 108, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.108.155420

关键词

-

向作者/读者索取更多资源

We investigate the impact of charge conjugation symmetry breaking on the dynamics of a lattice system and identify the phenomenon of the "tsunami effect," where particle density remains constant for an extended period of time even after the breaking of chiral symmetry.
We investigate how the breaking of charge conjugation symmetry C impacts on the dynamics of a half-filled fermionic lattice system after global quenches. We show that, when the initial state is insulating and the C symmetry is broken nonlocally by a constant magnetic flux, local observables, and correlations behave as if the symmetry were unbroken for a time interval proportional to the system size L. In particular, the local particle density of a quenched dimerized insulator remains pinned to 1/2 in each lattice site for an extensively long time, while it starts to significantly fluctuate only afterwards. Due to its qualitative resemblance to the sudden arrival of rapidly rising ocean waves, we dub this phenomenon the tsunami effect. Notably, it occurs even though the chiral symmetry is dynamically broken right after the quench. Furthermore, we identify a way to quantify the amount of symmetry breaking in the quantum state, showing that in insulators perturbed by a flux, it is exponentially suppressed as a function of the system size, while it is only algebraically suppressed in metals and in insulators with locally broken C symmetry. The robustness of the tsunami effect to weak disorder and interactions is demonstrated, and possible experimental realizations are proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据