4.7 Article

A generalized equivalent circuit model for lithium-iron phosphate batteries

期刊

ENERGY
卷 284, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2023.129316

关键词

Lithium-ion; Equivalent circuit models; Model order reduction; Control-oriented models; Cylindrical cells; Prismatic cells

向作者/读者索取更多资源

A generalized equivalent circuit model for lithium-iron phosphate batteries is proposed in this work, which only relies on the nominal capacity available in the cell datasheet. By utilizing previously characterized cell data, a generalized zeroth-order model is developed. Despite not requiring detailed data on electrical parameters, the model provides an excellent description of the electrical behavior for low-energy and high-energy cells.
Most of the equivalent circuit battery models available in the literature have been developed specifically for one cell and require extensive measurements to calibrate cell electrical parameters in different operating conditions. In this work, a generalized equivalent circuit model for lithium-iron phosphate batteries is proposed, which only relies on the nominal capacity, available in the cell datasheet. Using data from cells previously characterized, a generalized zeroth-order model is developed. This novel approach allows to avoid time-consuming and expensive experiments and reduces the test matrix. In spite of not relying on detailed data on the dependence of the electrical parameters with respect to state of charge, c-rate and temperature, the model provides an excellent description of the electrical behavior for both low-energy and high-energy cells, the error being always kept below 2 %. The internal resistance of the cell is expressed as a function of a new characteristic coefficient, which is typical of this lithium-ion battery chemistry. This coefficient is fitted to an exponential function of the temperature, which is physically meaningful, as the internal resistance has an Arrhenius-like behavior with respect to temperature. This model, due to its simplicity and flexibility, is particularly useful for control-oriented applications, and for off-line analyses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据