4.7 Article

Real-Time Local Greedy Search for Multiaxis Globally Time-Optimal Trajectory

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSMC.2023.3323005

关键词

Globally time optimal; invariant set (IS); real time; trajectory planning

向作者/读者索取更多资源

This article proposes a novel set invariant trajectory planning method to address the problem of real-time time-optimal planning for continuous multiaxis trajectories. The method is computationally efficient and maintains strict global time optimality.
Time-optimal trajectory planning aims to minimize the traversal time of arbitrary geometric paths. The demand for real-time planning widely exists in robotics, numerical control manufacturing, and autonomous vehicle applications. Existing trajectory planning methods either compromise on time optimality to improve computational efficiency or suffer from at least linear time complexity, preventing the planning of long trajectories in real time. Motivated by these challenges, this article proposes a novel set invariant trajectory planning (SITP) method to address the problem of real-time time-optimal planning for continuous multiaxis trajectories under complete second-order kinodynamic constraints. First, a backup control strategy is synthesized to construct an implicit control invariant set (CIS). This set is designed so that a feasible control input always exists to keep the system within the defined kinodynamic bounds. Then, utilizing the principles of bang-bang control theory, the optimal control is sought within the CIS. A local greedy linear programming method is proposed to calculate the time-optimal trajectory at each control cycle. The proposed method is computationally efficient for even 1-kHz real-time applications and the planned results maintain strict global time optimality, which makes it promising in real-time planning scenarios of various automatic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据