4.7 Article

Tests of general relativity in the nonlinear regime: A parametrized plunge-merger-ringdown gravitational waveform model

期刊

PHYSICAL REVIEW D
卷 108, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.108.024043

关键词

-

向作者/读者索取更多资源

The plunge-merger stage of the binary-black hole coalescence provides a unique opportunity to probe gravity in the dynamical regime. A parametrized waveform model is developed to explore deviations from general relativity in this stage. The results demonstrate the importance of waveform systematics and glitch mitigation procedures when interpreting tests of general relativity with gravitational wave observations.
The plunge-merger stage of the binary-black hole coalescence, when the bodies' velocities reach a large fraction of the speed of light and the gravitational-wave luminosity peaks, provides a unique opportunity to probe gravity in the dynamical and nonlinear regime. How much do the predictions of general relativity differ from the ones in other theories of gravity for this stage of the binary evolution? To address this question, we develop a parametrized waveform model, within the effective-one-body formalism, that allows for deviations from general relativity in the plunge-merger-ringdown stage. As first step, we focus on nonprecessing-spin, quasicircular black hole binaries. In comparison to previous works, for each gravitational wave mode, our model can modify, with respect to general-relativistic predictions, the instant at which the amplitude peaks, the instantaneous frequency at this time instant, and the value of the peak amplitude. We use this waveform model to explore several questions considering both synthetic-data injections and two gravitational wave signals. In particular, we find that deviations from the peak gravitational wave amplitude and instantaneous frequency can be constrained to about 20% with GW150914. Alarmingly, we find that GW200129_65458 shows a strong violation of general relativity. We interpret this result as a false violation, either due to waveform systematics (mismodeling of spin precession) or due to data-quality issues depending on one's interpretation of this event. This illustrates the use of parametrized waveform models as tools to investigate systematic errors in plain general relativity. The results with GW200129_65458 also vividly demonstrate the importance of waveform systematics and of glitch mitigation procedures when interpreting tests of general relativity with current gravitational wave observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据