4.7 Article

Plastic deformation in nanoindentation of Alx(CuCrFeNi)1_x high entropy alloy

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 968, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2023.172172

关键词

High-entropy alloys; Nanoindentation; Wear rates; Grain size; Al composition

向作者/读者索取更多资源

The deformation mechanism and evolutionary patterns of mechanical behavior in the Alx(CuCrFeNi)1_x high-entropy alloy during nanoindentation are investigated using molecular dynamics. The study reveals that the mechanical attributes and structural changes are influenced by temperature, grain size, and alloy composition. An increase in the Al percentage leads to a reduction in the indentation force, and the concentration of aluminum and larger grain sizes enhance the overall ductility of the alloys. The movement of mobile prismatic dislocations significantly contributes to the deformation process.
The molecular dynamics approach is utilized to examine the deformation mechanism and evolutionary patterns of mechanical behavior in the Alx(CuCrFeNi)1_x high-entropy alloy (HEA) during nanoindentation. A compre-hensive investigation is carried out on how temperature, grain size, and alloy composition impact the mechanical attributes and structural changes in the Alx(CuCrFeNi)1_x HEA (with x representing the molar ratio, x = 0.04-0.3). Alterations in the proportion of aluminum within the alloy content reveal a correlation wherein an increase in the Al percentage leads to a reduction in the indentation force. In terms of plastic deformation, the interplay between Al concentration, grain size, and temperature influences the conversion of local stress and shear strain into the bulk of the substrate, as evidenced by the presence of diverse slip bands. Additionally, the concentration of aluminum and larger grain sizes facilitate the extension of shear bands into the substrate, thereby augmenting the overall ductility of the alloys. In the realm of microstructure development, the movement of mobile prismatic dislocations within the substrate significantly contributes to the deformation process. Notably, the aluminum content governs the displacement of these dislocation rings into the substrate, while the growth of these rings is hindered by the grain size.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据