4.7 Article

Collective catalysis under spatial constraints: Phase separation and size-scaling effects on mass action kinetics

期刊

PHYSICAL REVIEW E
卷 108, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.108.044410

关键词

-

向作者/读者索取更多资源

Chemical reactions are usually studied assuming well-mixed substrates and catalysts throughout the system, but in reality, substrates and catalysts can undergo liquid-liquid phase separation to form condensates, which has significant effects on catalytic action. This study explores the impact of catalyst demixing on the kinetics of reaction pathways and finds that the formation of microenvironments due to phase separation can influence reaction times. The results have theoretical implications for mass action kinetics and provide insights into the role of phase separation in real metabolisms.
Chemical reactions are usually studied under the assumption that both substrates and catalysts are well-mixed (WM) throughout the system. Although this is often applicable to test-tube experimental conditions, it is not realistic in cellular environments, where biomolecules can undergo liquid-liquid phase separation (LLPS) and form condensates, leading to important functional outcomes, including the modulation of catalytic action. Similar processes may also play a role in protocellular systems, like primitive coacervates, or in membrane-assisted prebiotic pathways. Here we explore whether the demixing of catalysts could lead to the formation of microenvironments that influence the kinetics of a linear (multistep) reaction pathway, as compared to a WM system. We implemented a general lattice model to simulate LLPS of a collection of different catalysts and extended it to include diffusion and a sequence of reactions of small substrates. We carried out a quantitative analysis of how the phase separation of the catalysts affects reaction times depending on the affinity between substrates and catalysts, the length of the reaction pathway, the system size, and the degree of homogeneity of the condensate. A key aspect underlying the differences reported between the two scenarios is that the scale invariance observed in the WM system is broken by condensation processes. The main theoretical implications of our results for mean-field chemistry are drawn, extending the mass action kinetics scheme to include substrate initial hitting times to reach the catalysts condensate. We finally test this approach by considering open nonlinear conditions, where we successfully predict, through microscopic simulations, that phase separation inhibits chemical oscillatory behavior, providing a possible explanation for the marginal role that this complex dynamic behavior plays in real metabolisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据