4.7 Article

Synthesis and characterization of nanobiochar from rice husk biochar for the removal of safranin and malachite green from water

期刊

ENVIRONMENTAL RESEARCH
卷 238, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2023.116909

关键词

Rice husk; Biochar; Nanobiotechnology; Malachite green dye; Safranin dye; Pyrolysis; Adsorption; Dye removal

向作者/读者索取更多资源

This study investigates the potential of nanobiochar synthesized through ultrasonication and centrifugation for the removal of dyes from water. The results show that nanobiochar has a high adsorption capacity for dyes and can effectively remove them. The optimal removal efficiency is achieved at higher nanobiochar concentration, high temperature, and neutral pH.
Xenobiotic pollution in environment is a potential risk to marine life, and human health. Nanobiotechnology is an advanced and emerging solution for the removal of environmental pollutants. Adsorption-based technologies are being used to alleviate the global prevalence of xenobiotics like dyes, due to their high efficacy and cost effectiveness. Current study explored the potential of nanobiochar syntehsized via ultrasonication and centrifugation from rice husk for dye removal from water. It involves the synthesis of nanobiochar from rice husk biochar for removal of Safranin, Malachite green, and a mixture of both from aqueous water. Biochar was synthesized through pyrolysis at 600 degrees C for 2 h. To convert it into nanobiochar, sonication and centrifugation techniques were applied. The yield obtained was 27.5% for biochar and 0.9% for nanobiochar. Nanobiochar analysis through Fourier-Transform Spectrometer (FTIR), X-ray Power Diffraction (XRD) and scanning electron microscopy (SEM) suggested its crystalline nature having minerals rich in silicon, with a cracked and disintegrated carbon structure due to high temperature and processing treatments. Removal of dyes by nanobiochar was evaluated by changing different physical parameters i.e., nanobiochar dose, pH, and temperature. Pseudofirst order model and pseudo-second order model were applied to studying the adsorption kinetics mechanism. Kinetics for adsorption of dyes followed the pseudo-second order model suggesting the removal of dyes by process of chemical sorption. High adsorption was found at a higher concentration of nanobiochar, high temperature, and neutral pH. Maximum elimination percentages of safranin, malachite green, and a mixture of dyes were obtained as 91.7%, 87.5%, and 85% respectively. We conclude that nanobiochar could be a solution for dye removal from aqueous media.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据