4.4 Article

The dentary of hadrosauroid dinosaurs: evolution through heterochrony

期刊

PALAEONTOLOGY
卷 66, 期 5, 页码 -

出版社

WILEY
DOI: 10.1111/pala.12674

关键词

hadrosaur; dentary; geometric morphometrics; heterochrony; paedomorphosis; peramorphosis

向作者/读者索取更多资源

This study reveals that hadrosauroid dinosaurs, specifically saurolophids, underwent morphological modifications in their lower jaw to enhance food acquisition and processing efficiency. These adaptations include elongation of the edentulous region and anterior inclination of the coronoid process. These changes were likely caused by evolutionary and growth-related processes.
The near-global distribution of hadrosaurid dinosaurs during the Cretaceous has been attributed to mastication, a behaviour commonly recognized as a mammalian adaptation. Its occurrence in a non-mammalian lineage should be accompanied by the evolution of several morphological modifications associated with food acquisition and processing. This study investigated morphological variation in the dentary, a major element of the hadrosauroid lower jaw. Eighty-four hadrosauroid dentaries were subjected to geometric morphometric and statistical analyses to investigate their taxonomic, ontogenetic, and individual variation. Results suggest increased food acquisition and processing efficiency in saurolophids through a complex pattern of evolutionary and growth-related changes. The edentulous region grew longer relative to dentary length, allowing for food acquisition specialization anteriorly and processing posteriorly, and became ventrally directed, possibly associated with foraging low-growing vegetation, especially in younger individuals. The saurolophid coronoid process became anteriorly directed and relatively more elongate, with an expanded apex, increasing moment arm length, with muscles pulling the jaw more posteriorly, increasing mechanical advantage. During growth, all hadrosauroids underwent anteroposterior dental battery elongation by the addition of teeth, and edentulous region ventralization decreased. The dental battery became deeper in saurolophids by increasing the number of teeth per tooth family. The increased coronoid process anterior inclination and relative edentulous region elongation in saurolophids are hypothesized to have evolved through hypermorphosis and/or acceleration, peramorphic heterochronic processes; the development of an anteroposteriorly shorter but dorsoventrally taller saurolophid dentary, is probably due to post-displacement in dental battery elongation and edentulous region decreased ventral orientation, a paedomorphic heterochronic process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据