4.3 Article

Classification of suspended particles in seawater using an in situ polarized light scattering prototype

期刊

出版社

WILEY
DOI: 10.1002/lom3.10580

关键词

-

向作者/读者索取更多资源

This article introduces an in situ prototype based on polarized light scattering, which is able to classify suspended particles in seawater and calculate their relative proportions. The experimental results show that the prototype has an accuracy larger than 85% in identifying sediments, microplastics, and phytoplankton, and monitoring their temporal variations.
Classification of suspended particles characterizes the composition of seawater, which helps the interpretation of remote sensing data and promotes the researches of the matter exchanges in ocean processes. In this article, an in situ prototype based on polarized light scattering is introduced, and its ability to classify the suspended particles is demonstrated. The experimental results show that the prototype can classify the sediments, microplastics, and phytoplankton in seawater with an accuracy larger than 85%, and further calculate their relative proportion in water. In the summer and winter of 2020, the prototype was deployed three times in Daya Bay and lasted for dozens of hours each time, along with the additional commercial sensors, that is, Environment X Observation (EXO) and Acoustic Doppler Current Profiler (ADCP). The chlorophyll content measured by EXO and the acoustic backscatter intensity measured by ADCP are respectively related to the number of algal cells and sediments in the water, which helps to interpret the data of the prototype. The results of field data show that the prototype can effectively classify phytoplankton and sediment particles in seawater and monitor their temporal variations. Besides, the retrieved information of the suspended particles is consistent with the analysis from the flow dynamics and season variations in Daya Bay. These results indicate the ability of this prototype to classify the suspended particles in seawater, which promises its potential contribution to particulate oceanography in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据