4.8 Article

Photo-enzyme-polymerized hydrogel platform exhibits photo-switchable redox reversibility for diabetic wound healing

期刊

NANO TODAY
卷 53, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.nantod.2023.102028

关键词

Hydrogel; Enzymatic polymerization; Photo-coupled electron transfer; Adjustable redox; Ability; Wound healing

向作者/读者索取更多资源

A photo-enzyme-coupled hydrogel platform with spatio-temporally controlled hydrogel network was constructed through photoenzymatic-initiated radical polymerization, allowing for photo-switchable redox performance. The platform was shown to modulate bidirectional oxidation/antioxidant effects for complicated wound healing and provides ideas for enzyme engineering design.
Redox homeostasis catalyzed by series oxidoreductases is important to maintain normal physiological functions, including mutually contradictory reactive oxygen species generation or reduction by separated enzyme regulation during cellular metabolism. The unidirectional enzyme regulation of redox homeostasis by biocatalytic reaction is an emerging catalytic medicine approach to disease biomimetic treatments. Bioinspired by photo-synthesis, an efficient photo-enzyme-coupled hydrogel platform (Gel) with a spatio-temporally controlled hydrogel network was constructed through photoenzymatic-initiated radical polymerization in the absence of the corresponding enzyme substrate. Then, the coupling mechanism of light-induced electron transfer-enzyme activity center allosteric was explored through free radical analysis and theoretical calculations. The photo-switchable redox performance has been demonstrated based on the special anaerobic dehydrogenases, the flavin adenine dinucleotide (FAD)-centered dihydrolipoamide dehydrogenase (DLD) platform. At last, both in vitro and in vivo biological effects have been verified to evaluate the bidirectional oxidation/antioxidant modulation for the complicated wound healing in diabetic mice and wound-infected animals. The photo -enzymatic coupling dehydrogenase-laden hydrogel platform proposed in this work provides ideas for the engineering design of enzymes, and the physical-biochemical regulatory mechanisms also offers a theoretical basis for controllable activation of enzyme activity, allowing for potential biomedical applications in metabolic processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据