4.3 Article

Combined with dynamic serum proteomics and clinical follow-up to screen the serum proteins to promote the healing of diabetic foot ulcer

期刊

ENDOCRINE
卷 -, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1007/s12020-023-03579-1

关键词

Diabetic foot ulcer; APOA1; Proteomics; Wound healing

向作者/读者索取更多资源

This study investigated the impact of biomarkers on the healing of diabetic foot ulcers by utilizing dynamic serum proteomics and skin proteomic analysis, combined with clinical case follow-up studies.
ObjectiveNon-healing diabetic foot ulcers are a leading cause of disability and death in diabetic patients, which often results in lower limb amputation. This study aimed to investigate the impact of biomarkers on the healing of diabetic foot ulcers by utilizing dynamic serum proteomics and skin proteomic analysis, combined with clinical case follow-up studies.MethodsTo analyze dynamic serum proteomic changes in four groups, age-matched normal subjects, diabetic patients, pretreatment diabetic foot ulcer patients, and healed diabetic foot ulcer patients were selected. The differential proteins were screened in conjunction with normal and diabetic foot ulcer skin proteomics. In this study, a total of 80 patients with diabetic foot ulcers were enrolled and monitored for 3-6 months during treatment. To verify the significance of the differential proteins, age-matched diabetic patients (240 patients) and healthy controls (160 patients) were included as controls.ResultsDynamic serum proteomics trend showed that the level of negative regulatory proteins related to endothelial cell migration, angiogenesis, and vascular development was significantly decreased after treatment of diabetic foot ulcer. GO enrichment analysis suggested that differentially expressed proteins were mainly enriched in protein activation cascade, immunoglobulin production, and complement activation. The researchers identified the core proteins APOA1, LPA, and APOA2 through a convergence of serum and skin proteomics screening. Clinical cases further validated that APOA1 levels are decreased in diabetic foot ulcer patients and are correlated with disease severity. In addition, animal experiments showed that APOA1 could promote wound healing in diabetic mice.ConclusionsBased on our dynamic proteomics and clinical case studies, our bioinformatic analysis suggests that APOA1 plays a critical role in linking coagulation, inflammation, angiogenesis, and wound repair, making it a key protein that promotes the healing of diabetic foot ulcers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据