4.6 Article

Suppressing pre-aggregation to increase polymer solar cell ink shelf life

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 12, 期 1, 页码 113-120

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3ta06617g

关键词

-

向作者/读者索取更多资源

This study reveals the rapid degradation and aging issue of inks prepared via thermal and mechanical agitation at room temperature and develops an approach to slow down the aging process by adding high miscibility additives. The additives act as co-solvents to prevent the pre-aggregation of polymers and maintain electron percolation, benefiting charge creation and collection. This synergistic approach promotes the scale-up of ink-processed organic solar cells.
Chemical degradation and morphology failure of ink-processed organic solar cells are now extensively studied. In contrast, the general problem that inks prepared via thermal and mechanical agitation degrade and age rapidly at room temperature has yet to be delineated as a commercialization bottleneck and resolved. This study unveils the intrinsic aging of common polymer:nonfullerene acceptor (NFA) binary inks and the impact of electro-optically active component additives on ink shelf life. As a result, we developed an effective approach to slow down the ink aging by employing an additive (i.e. PCBM variants) with high miscibility with the polymer and NFA. It is inferred that the PCBMs in the inks acts as a co-solvent and slows down the polymer and possibly the NFA pre-aggregation, preventing the formation of large domains in the films. At the same time, the PCBMs dissolved in the polymer-rich phase of the devices can maintain the electron percolations and hence benefit charge creation and collection. The method of introducing a hyper-miscible third component, that is, with concentration above the percolation threshold, to improve ink shelf life and maintain the percolation is delineated for the first time. It represents a synergistic approach to promote the scale-up of ink-processed organic solar cells. An approach to slow down the polymer solar cell ink aging by employing an additive (i.e., PCBM variants) was developed. It is inferred that PCBMs in the ink act as a co-solvent and slow down the polymer pre-aggregation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据