4.7 Article

Dual-regulation by Cx32 in hepatocyte to trigger and worsen liver graft injury

期刊

TRANSLATIONAL RESEARCH
卷 262, 期 -, 页码 44-59

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.trsl.2023.07.008

关键词

Liver graft injury; Connexin32; Gap junction; Oxidative stress; Inflammatory response; Apoptosis

向作者/读者索取更多资源

This study investigates the role of connexin32 (Cx32) in liver graft injury and reveals its mechanism of action. Cx32 can regulate multiple signaling pathways to reduce liver graft injury, and it can also exacerbate liver graft injury through the transfer of oxidative stress and inflammatory response.
Liver transplantation is the ultimate treatment option for end-stage liver failure. However, liver graft injury remains a challenge. This study aimed to investigate the role of connexin32 (Cx32) in liver graft injury and elucidate its mechanism of action. Through detecting liver graft samples from 6 patients, we observed that changes in the Cx32 level coincided with liver graft injury. Therefore, we established autologous orthotopic liver transplantation (AOLT) models using Cx32-knockout and wild-type mice and hypoxia/reoxygenation (H/R) and lipopolysaccharide (LPS) pretreatment models using alpha mouse liver 12 (AML12) cells, to explore Cx32 mechanisms in liver graft injury. Following in vivo and in vitro Cx32 knockout, oxidative stress and inflammatory response were inhibited through the regulation of PKC-alpha/NF-kappa B/NLRP3 and Nrf2/NOX4/ROS signaling pathways, thereby reducing Bak/Bax-related apoptosis and ameliorating liver graft injury. When the Cx32-based gap junction (GJ) was blocked with 2-aminoethoxydiphenyl borate (2-APB), ROS transfer was attenuated between neighboring cells, exacerbated oxidative stress and inflammatory response were prevented, and aggravation of liver graft injury was mitigated. These results highlight the dual regulation mechanism of Cx32 in liver graft injury. Through interaction with PKC-alpha, Cx32 regulated the NF-kappa B/NLRP3 and Nrf2/NOX4/ROS signaling pathways, thus directly triggering oxidative stress and inflammatory response. Simultaneously, mass-produced ROS were transferred to neighboring cells through Cx32 channels, for which oxidative stress and the inflammatory response were aggravated indirectly. Finally, Bak/Bax-related apoptosis was activated, thereby worsening liver graft injury. Our findings propose Cx32 as a dual mechanistic factor for oxidative stress and inflammatory signaling pathways in regulating cell apoptosis on liver graft injury, which suggests a promising therapeutic targets for liver graft injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据