4.7 Article

On the functional brain networks involved in tool-related action understanding

期刊

COMMUNICATIONS BIOLOGY
卷 6, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42003-023-05518-2

关键词

-

向作者/读者索取更多资源

This fMRI study explores the neural mechanisms by which the human brain integrates semantic and mechanical knowledge to understand tool-related actions. The findings suggest that tool-related action understanding is a combination of semantic and mechanical knowledge, with the left inferior parietal and anterior temporal lobes playing important roles in physical/conceptual processing, respectively.
Tool-use skills represent a significant cognitive leap in human evolution, playing a crucial role in the emergence of complex technologies. Yet, the neural mechanisms underlying such capabilities are still debated. Here we explore with fMRI the functional brain networks involved in tool-related action understanding. Participants viewed images depicting action-consistent (e.g., nail-hammer) and action-inconsistent (e.g., scarf-hammer) object-tool pairs, under three conditions: semantic (recognizing the tools previously seen in the pairs), mechanical (assessing the usability of the pairs), and control (looking at the pairs without explicit tasks). During the observation of the pairs, task-based left-brain functional connectivity differed within conditions. Compared to the control, both the semantic and mechanical conditions exhibited co-activations in dorsal (precuneus) and ventro-dorsal (inferior frontal gyrus) regions. However, the semantic condition recruited medial and posterior temporal areas, whereas the mechanical condition engaged inferior parietal and posterior temporal regions. Also, when distinguishing action-consistent from action-inconsistent pairs, an extensive frontotemporal neural circuit was activated. These findings support recent accounts that view tool-related action understanding as the combined product of semantic and mechanical knowledge. Furthermore, they emphasize how the left inferior parietal and anterior temporal lobes might be considered as hubs for the cross-modal integration of physical and conceptual knowledge, respectively. An fMRI study on the neural mechanisms by which the human brain may integrate semantic and mechanical knowledge to understand tool-related actions. The study underscores the key roles of the left inferior parietal and anterior temporal lobes in physical/conceptual processing, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据