4.6 Article

Distinct mode of action of a highly stable, engineered phage lysin killing Gram-negative bacteria

期刊

MICROBIOLOGY SPECTRUM
卷 -, 期 -, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.01813-23

关键词

lysin; mode of action; Acinetobacter baumannii; serum; osmotic lysis; thermoresistance

向作者/读者索取更多资源

This study reveals an unexpected mode of action and exceptional thermoresistance for lysin 1D10. The findings provide valuable insights for lysin engineering designs in the future.
Therapeutic options to treat bacterial infections caused by Gram-negative pathogens are limited due to the spread of multidrug resistance. Protein engineering of phage-derived lysins can play a key role in the search for new antimicrobial compounds targeting Gram-negative pathogens. A previous high-throughput screen of a combinatorial lysin library identified lysin 1D10 active against Acinetobacter baumannii under elevated human serum concentrations. The engineered lysin consists of four modules: cecropin A, a linker, cell wall-binding domain, and an enzymatic active domain. Using time-lapse microscopy, we show that 1D10 has a distinct antibacterial mode of action resulting in local cell wall bulging at the septum instead of cell-wide lysis, as observed for previously reported engineered lysins that target Gram-negative bacteria. Our results indicate that the activity of 1D10 relies on the antibacterial activity of both cecropin A (CecA) and the enzymatically active domain. Based on a truncation analysis, the role of each of the four modules of 1D10 was dissected. We further compared the antibacterial spectrum, thermostability, and cytotoxicity of cecropin A alone and lysin 1D10. Both lysin 1D10 and CecA are most active against A. baumannii and are not cytotoxic toward human keratinocytes. Lysin 1D10 unfolds at 57 degrees C and has a remarkable refolding capacity, as it regains its activity even after exposure to 90 degrees C and sterilization conditions, whereas CecA is inactivated at 70 degrees C. Overall, the present study shows that an improved understanding of the killing mechanism and the protein properties will further support lysin engineering designs in the future. IMPORTANCE Engineered lysins are considered as highly promising alternatives for antibiotics. Our previous screening study using VersaTile technology identified 1D10 as a possible lead compound with activity against Acinetobacter baumannii strains under elevated human serum concentrations. In this manuscript, we reveal an unexpected mode of action and exceptional thermoresistance for lysin 1D10. Our findings shed new light on the development of engineered lysins, providing valuable insights for future research in this field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据